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Abstract

Fully!developed\ laminar\ steady\ free!and!forced convection heat transfer in an electrically!conducting ~uid ~owing
in an electrically!insulated\ horizontal\ circular pipe "with its wall subjected to a uniform heat ~ux# in a vertical\ uniform\
transverse magnetic _eld was solved numerically using several _nite di}erence schemes for Grashof numbers from 9 to
095 and Hartmann numbers from 9 to 499[ For high Hartmann numbers\ a re_nement of the mesh in the radial direction
was necessary in the Hartmann boundary layer and relaxation techniques were needed to have a convergent solution[
Velocity pro_les\ temperature pro_les and local and average Nusselt numbers are reported for combined free!and!forced
convection[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a pipe radius ðmŁ
B9 magnetic _eld ðTŁ
c speci_c heat ðJ kg−0 K−0Ł
d pipe diameter ðmŁ
Gr Grashof number\ `ba3q:kn1

h h mesh size
hc heat transfer coe.cient
H dimensionless axial _eld\ Hz:ðum"smf#0:1Ł
H� normalized _eld\ H:g
i h!integer variable 0\ 1\ 2\ [ [ [ \L−0
j 8!integer variable 0\ 1\ 2\ [ [ [ \K
k thermal conductivity ðW m−0 K−0Ł
K maximum of j integer at F � p

L maximum of i integer at h � 0
M Hartmann number\ B9a"s:mf#0:1

n iteration step 0\ 1\ 2\ [ [ [
Nu Nusselt number\ hcd:k
Pr Prandtl number\ mfc:k
q wall heat ~ux\ k 1T:1r at r � a
r radial coordinate ðmŁ
r\ 8\ z polar coordinates

� Corresponding author[

Re Reynolds number\ umd:n
RM magnetic Reynolds number\ smuma
Rs RMS of residuals for s variable
T temperature ð>CŁ
Ta area!average temperature ð>CŁ
Tm bulk mixing!cup temperature ð>CŁ
u dimensionless radial velocity\ ur:U�
um mean axial velocity ðm s−0Ł
ur radial velocity ðm s−0Ł
u8 azimuthal velocity ðm s−0Ł
uz axial velocity ðm s−0Ł
U� reference velocity for radial and azimuthal direc!
tions\ az`bq:k ðm s−0Ł
v dimensionless azimuthal velocity\ u8:U�
w dimensionless axial velocity\ uz:um

w� normalized axial velocity\ w:g[

Greek symbols
b volumetric thermal expansion ðK−0Ł
g dimensionless pressure gradient\ ð"1P:1z#a1Ł:ummf

h dimensionless radial coordinate\ r:a
u dimensionless temperature\ "T−Ta#:"aq:k#
m magnetic permeability ðkg m A−1 s−1Ł
mf dynamic viscosity ðNs m−1Ł
n kinematic viscosity ðm1 s−0Ł
j dimensionless axial vorticity
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r density ðkg m−2Ł
s electrical conductivity ðA V−0 m−0Ł
8 angular coordinate
c dimensionless stream function
v relaxation parameter[

0[ Introduction

Considerable attention has been given to mag!
netohydrodynamic "MHD# ~ows since the beginning of
this century[ Signi_cant applications have been reported
such as the MHD generator\ MHD ~ow meter\ MHD
pump and MHD marine propulsion[ Some other quite
promising applications are in the _eld of metallurgy such
as MHD stirring of molten metal and magnetic!levitation
casting[ A very useful proposed application which
involves MHD is the lithium cooling blanket in a nuclear
fusion reactor ð0Ł[ With the high!temperature plasma
contained in the reactor by means of a toroidal magnetic
_eld\ liquid lithium ~ows in channels "blankets# between
the plasma and magnetic windings to absorb the thermal
energy released by the fusion reaction[ The proximity of
the lithium blankets to the _eld coils means that the ~ow
will be acted upon by extremely strong magnetic _elds[
Consequently\ a knowledge of fundamental MHD inter!
actions is necessary in order to determine pressure drops\
heat transfer\ etc[\ in channels or pipes situated at di}er!
ent angles to a magnetic _eld[ One such fundamental
~ow is that a magneto!~uid!mechanic "MFM# pipe ~ow
subjected to a transverse magnetic _eld with combined
free!and!forced convection heat transfer[ The laminar
~ow considered here is also the limiting case for turbulent
~ow at high Reynolds numbers "even 095 or higher# where
high magnetic _elds can damp out turbulent ~uctuations
and {laminarize| the ~ow ð1Ł[ Lo ð2\ 3Ł investigated this
laminar problem using a perturbation method which pro!
duced some details of the secondary ~ow but his results
were limited to small values of the Hartmann number\
M � B9azs:mf[ The present work extends this problem
by solving the appropriate governing partial di}erential
equations simultaneously to yield the stream function of
the secondary ~ow\ the induced magnetic _eld\ stream!
wise and azimuthal velocity pro_les\ temperature dis!
tributions and local and average Nusselt numbers[ For
Gr ¾ 093\ the central di}erence scheme is employed[ The
modi_ed third!order!accurate upwind scheme is applied
in the convective terms for larger Grashof numbers up to
095[ The Grashof number\ Gr �"`ba3q:kn1#\ is based on
the constant wall heat ~ux boundary conditions[ In terms
of the range of Hartmann numbers and Grashof numbers
considered here\ one could reach a Grashof number of
095 and a Hartmann number of 499 with the ~ow of a
liquid metal such as mercury in a 5 cm diameter pipe\ a
wall heat ~ux of 0[9 kW m−1 and an applied magnetic
_eld of 9[52 Tesla[ Other liquid metals would have a

similar range of parameters[ Conducting ~uids such as
electrolytes would require a much higher applied _eld
because their electrical conductivity is lower than that in
liquid metals by several orders of magnitude[

1[ Governing equations

From the assumptions that a constant vertical mag!
netic _eld is applied to electrically!conducting ~ow which
is laminar\ steady and fully!developed in an electrically!
insulated\ horizontal\ circular pipe whose wall is sub!
jected to a uniform heat ~ux\ the dimensionless governing
equations for forced convection MFM pipe ~ow can be
cast into a coupled set of _ve partial di}erential equations
ð4\ 5Ł[ For most typical engineering applications\ the mag!
netic Reynolds number\ RM\ is much less than unity
"unless the length scale is large as found in astrophysical
applications# and the governing equations can be sim!
pli_ed due to the fact that the induced magnetic _eld is
much smaller than the applied _eld[ Only the interaction
of the applied _eld and the ~uid motion need to be taken
into account[ The momentum equations in the radial and
azimuthal directions are cross di}erentiated and sub!
tracted to eliminate the pressure gradient terms and the
problem is cast in terms of the vorticity and stream func!
tions in polar coordinates[ Consult refs ð2Ð5Ł for more
details[ Figure 0 shows the orientation of the pipe\ _eld
and cylindrical coordinate system[

1[0[ Vorticity and stream function relationship

91c � −j[ "0#

Fig[ 0[ Pipe cross!section showing coordinate system and orien!
tation of the magnetic _eld[
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1[1[ Combined azimuthal and radial momentum equation
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where j is the axial vorticity of the secondary azimuthal
and radial ~ow and
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1[2[ Axial momentum equation
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1[3[ Induction equation
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1[4[ Ener`y equation
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The relation between w and w� is given by
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with the following dimensionless boundary conditions]

w =h�0 � 9

from the no!slip condition\

v=h�0 � −
1c

1h bh�0

� 9 "6#

and
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0
h
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18 bh�0
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from the nonpermeable condition[ From equations "6#
and "7#\ one can deduce that it is su.cient to let

c =h�0 � 9[ "8#

In addition\ from the condition of zero wall electrical
conductivity\

H =h�0 � 9 "09#

and from the condition of uniform heat ~ux at the wall

1u

1h bh�0

� 0[ "00#

It should also be kept in mind that all physical quantities
are _nite at the origin at h � 9[

2[ Difference equations

Figure 1 shows the general structure of the _nite!
di}erence mesh arrangement[ Equations "0#Ð"4# are then
discretized using the modi_ed third!order upwind scheme
ð6Ł and the following equations are obtained\ respectively]

G0ci¦0j¦G1ci−0j¦G2cij¦0¦G2cij−0¦G9cij � −h1jij

"01#

A0xi¦0j¦A1ji−0j¦A2jij¦0

¦A3jij−0¦ðA9−M1h1 sin1" jd8#Łjij � −Sij "02#

A0w�i¦0j¦A1w�i−0j¦A2w�ij¦0¦A3w�ij−0¦A9w�ij � Cij

"03#

G0H�i¦0j¦G1H�i−0j¦G2H�ij¦0¦G2H�ij−0¦G9H�ij � Dij

"04#

and

F0ui¦0j¦F1ui−0j¦F2uij¦0¦F3uij−0¦F9uij

� 1h1wij¦Pr Z"u#ij "05#

where

G0 � 0¦
0
1i

\ G1 � 0−
0
1i

\

Fig[ 1[ Polar coordinate system showing h and 8 mesh network[
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Equations "06#Ð"08# represent the source terms of their

respective equations[ "If the central di}erence scheme is
used\ the second terms of the coe.cients A0 and A1\ A2

and A3\ F0 and F1\ and F2 and F3 should be replaced by
e:"1d8#\ b:"1d8#\ e Pr:"1d8#\ and b Pr:"1d8#\ re!

spectively\ but A9 and F9 would be just G9[ In addition\ all
Z" # operators would be dropped o} from all equations[#
Figure 1 shows the mesh arrangement where
i � 0\ 1\ [ [ [ \L−0 and j � 9\ 0\ [ [ [ \K[ Only the right half
of the cross!section need be considered because the prob!
lem is symmetrical along the vertical diameter[

The discretized boundary conditions are given as

2[0[ Vorticity boundary condition

jL �
2"cL−cL−0#

h1
−

jL−0

1
[ "19#

2[1[ Dirichlet boundary conditions

cLj � 9 w�Lj � 9 H�Lj � 9[ "10#

2[2[ Neumann boundary condition

1u

1h bLj

� 0 �
−3uL−0j¦uL−1j¦2uLj

1h
¦O"h1#[ "11#

3[ Solution of the equations

The systems of linear algebraic equations can be solved
by employing the line!iterative method with the pro!
cedure summarized as follows]

"0# Guess initial values for all the variables[
"1# Calculate w�\ H� and u at h � 9 using the rec!

tangular form of the _nite di}erence equations of
those variables for next iteration[

"2# Apply Dirichlet boundary conditions\ "10#[
"3# Apply the condition that c and j are zero along the

vertical diameter[
"4# Calculate c\ j\ w� and H� in the interior points

using "01#Ð"04# for next cycle\ keeping in mind that
w� and H� are symmetrical along the vertical diam!
eter[

"5# Apply boundary condition "19# for j[
"6# Calculate w from "5#[
"7# Calculate u in the interior points using "05#\ keeping

in mind that u is symmetrical along the vertical
diameter[

"8# Apply the Neumann boundary condition\ "11#[
"09# Check the convergence by computing the root!

mean!square residual\ Rs\ for each ~ow variable {s|[
Convergence is considered to be achieved when
Rs ³ 09−3[ Rs is de_ned from ref[ ð6Ł\ as

Rs �X s
L

i�9

s
K

j�9

"sn¦0
ij −sn

ij#1[

"00# Repeat steps 1Ð09 until convergence is established[
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4[ Results

The simultaneous solution of equations "0#Ð"4# was
_rst tested and compared to a number of known limiting
cases[ Setting the magnetic _eld and the buoyancy force
terms equal to zero yielded the parabolic pro_le for pipe
~ow and the well known Nusselt number of 37:00 for
forced convection with a constant heat ~ux at the wall[
Letting both the buoyancy terms and the heat transfer to
be zero but with non!zero magnetic _eld\ the numerical
results reproduced Gold|s ð7Ł MFM velocity pro_les and
nondimensional pressure gradient\ g[ With constant heat
~ux at the wall\ non!zero magnetic _eld and zero buoy!
ancy forces\ Gardner|s ð8Ł forced convection MFM solu!
tion was reproduced[ Further numerical results where the
buoyancy terms were included were tested for sensitivity
to mesh size[ Only convergent solutions were accepted[
References ð4\ 5Ł discuss these comparisons in more
detail[ In general\ a 13×13 mesh was used for Hartmann
numbers up to 099[ For larger values a 013×13 grid
was employed in order to compute stable points in the
Hartmann boundary layer[ The machine used was a
Micro!Vax II VMS system[ The time required to achieve
099 iterations on a 13×13 mesh is about 0[6 min[ The
013×13 grid required 7[24 min per 099 iterations[ When
the modi_ed third!order accurate upwind scheme was
used\ the time for a 13×13 mesh was 2[0 min:099 iter!
ations and 03[3 min:099 iterations for a 013×13 grid[

The combined axial ~ow and secondary ~ow caused
by the natural convection creates a ~ow pattern in which
the streamlines are in the form of a double helix as the
~uid ~ows through the pipe[ The ~uid rises near the wall
in the vicinity of f � p:1 where the axial ~ow is slow\
moves up to the top of the pipe at f � 9 where it then
~ows downward through the middle of the cross!section
where the axial ~ow is higher[ Figure 2 shows streamlines
in the plane of the cross!section for Gr � 093 and 095 and
Hartmann numbers from 9Ð099[ Figure 3 shows the up
and down ~ow of the velocity pro_les along the f � p:1
diameter[ As the Hartmann number is increased the inter!
action of the _eld and the secondary ~ow is such that
the secondary ~ow is suppressed[ This is not a simple
interaction because the secondary ~ow distorts the elec!
tric current lines as shown in Fig[ 4[ For large Grashof
numbers "¼095# and low magnetic _elds "M � 0#\ the
electric current lines are distorted enough that they tend
to close upon themselves in secondary loops as shown in
the upper right!hand picture of Fig[ 4[

Figure 5 shows how the natural convection and the
magnetic _eld interact to distort the parabolic velocity
pro_les[ As the Grashof number "natural convection# is
increased\ the secondary ~ow tends to slow the ~ow along
the vertical diameter causing two maxima to appear[
Increasing the Hartmann number "magnetic _eld# causes
the symmetrical parabolic pro_le to change into a wedge
shaped pro_le with the Hartmann ~attening most promi!

Fig[ 2[ Streamlines of the secondary ~ow as a function of the
Grashof number and Hartmann number[

Fig[ 3[ Azimuthal velocity pro_les at 8 � p:1 as a function of
Hartmann number and Grashof number[

nent near the wall at f � 9 and f � p[ The magnetic _eld
also inhibits the spiral secondary ~ow and eliminates it
entirely for large Hartmann numbers[ Since the pipe wall
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Fig[ 4[ Electric current lines as a function of the Grashof number
and Hartmann number[

is assumed electrically insulated there is no net MFM
ponderomotive force in the axial direction[ The in~uence
of the magnetic _eld and natural convection shows up in
the local shear at the wall[ This is apparent in Fig[ 6
where the nondimensional pressure gradient is plotted as
a function of the Hartmann and Grashof numbers\ M
and Gr\ respectively[ With increasing natural convection
"Gr#\ the nondimensional pressure gradient increases[ As
the _eld is increased\ the in~uence of the natural con!
vection is diminished and all curves asymptotically
approach Gold|s solution ð7Ł where natural convection is
absent[ The temperature pro_les are displayed in Fig[ 7
in the form of isotherms in the cross!section of the pipe[
As the natural convection is increased\ the isotherms are
distorted from concentric circles to a {_sh mouth| pattern[
With increasing magnetic _eld strength\ the pattern
reverts to a more symmetric circular pattern[

The secondary spiral motion of the natural convection
induces an angular dependence into the problem in~u!
encing both velocity and temperature pro_les[ The Nus!
selt number\ de_ned as Nu � hd:k\ can be cast in terms
of the wall heat ~ux as Nu � qd:k"Tw−Tm# which
depends on angular position through Tw"f#[ The result!
ing angular dependence in the Nusselt number is shown
in Figs 8 and 09[ Figure 8\ the case of zero _eld\ dem!
onstrates that the Nusselt number near the top of the
pipe is reduced due to the ~uid being heated as it rises
along the side walls[ The wall temperature increases in
order to keep the wall heat ~ux constant and the tem!
perature di}erence between the wall and the bulk mixing!
cup temperature increases resulting in a decrease in
Nusselt number[ At the bottom of the cross!section the
Nusselt number goes up because the temperature di}er!
ence\ Tw−Tm\ is reduced by the cooler ~uid coming into

this region from the cooler central region of the cross!
section[ If the Grashof number is high "see Gr � 095 in
Fig[ 8#\ the secondary ~ow is strong enough to bring
warmer ~uid from the top of the cross!section all the way
down to the wall region near f � p causing the Nusselt
number to reverse its trend and decrease[ In Fig[ 09 the
in~uence of the magnetic _eld is shown over a range of
Hartmann numbers of 9Ð499[ As the _eld is increased\
the Hartmann ~attening dominates at f � 9 causing the
Nusselt number to increase[ At the bottom of the cross!
section near f � p the two mechanisms of damping of the
natural convection and the Hartmann ~attening compete
with each other[ For low Grashof numbers "093# the
damping of the natural convection allows the Nusselt
number to decrease monotonically[ At the higher Gra!
shof number "095# the Hartmann ~attening _rst increases
the Nusselt number and then as the natural convection
is damped out\ the Nusselt number decreases[ As the
natural convection is eliminated\ the ~ow becomes sym!
metrical in each of the four quadrants of the cross!
section[ The complete picture of MFM natural con!
vection is shown in Fig[ 00 where the Nusselt number
averaged over f � 9 to f � p is plotted as a function of
Hartmann and Grashof numbers[ As the Grashof num!
ber is increased\ the induced secondary ~ow increases
the Nusselt number through the mechanism of bringing
cooler ~uid near the wall region[ The maximum in the
curve for Gr � 095 appears to be due to the fact that there
is a range of values where both natural convection and
Hartmann ~attening act in concert to bring cooler ~uid
to the wall region[ Eventually\ as the magnetic _eld "Hart!
mann number# is increased further\ the damping of the
natural convection causes all curves to asymptotically
approach the curve for MFM forced convection only ð8Ł[
The in~uence of natural convection can be considered
insigni_cant at that point[

5[ Summary

The problem of combined free and forced convection
MFM pipe ~ow with a constant heat ~ux at the wall was
solved numerically for a range of Grashof numbers from
9 to 095 and Hartmann numbers from 9 to 499[ Velocity
pro_les\ temperature pro_les\ local and average Nusselt
numbers were presented showing a consistent picture that
the application of the magnetic _eld inhibits the sec!
ondary motion of the natural convection while the vel!
ocity pro_le undergoes a metamorphosis from a para!
bolic pro_le to the wedge!shaped pro_le of MFM forced
convection[ The speci_c practical application of this
information lies in being able to use it to determine the
axial pressure gradient for pumping calculations and
local and average heat transfer coe.cients for heat trans!
fer estimates in laminar pipe ~ows of electrically con!
ducting ~uids being subjected to applied external
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Fig[ 5[ Axial velocity pro_les\ w"h\ 8#\ as a function of Grashof number and Hartmann number[
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Fig[ 8[ Local Nusselt number as a function of Grashof number
and angle from the vertical[

Fig[ 6[ Dimensionless pressure gradient for low and high Hart!
mann numbers[

Fig[ 09[ Local Nusselt number as a function of angle from
the vertical and Hartmann number for low and high Grashof
numbers[

Fig[ 7[ Isotherms and nondimensional temperature as a function
of Grashof number and Hartmann number[
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Fig[ 00[ Average Nusselt number as a function of Hartmann number and Grashof number[ The symbols indicate values where complete
numerical solutions were generated[

magnetic _elds when both mechanisms of free and forced
convection are important[
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